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The World of Acoustics Before Signal Processing 
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Agenda 
• Introduction!

!- The Automatic Target Recognition Problem!
!- Feature Selection Fundamentals!

• Feature Selection for Gaussian Target Classes!
!- Distance Measures!
!- Subset Selection Algorithms!

• Information-Theoretic Distance Measures!
!- Divergence!
!- Hellinger Divergence!

• Density Estimation!

• New Feature Selection Algorithm for Non-Gaussian Target Classes!

• Experimental Results!

• Discussion!
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Automatic Target Recognition Depends Heavily on the  
Judicious Choice of Signal / Image Features!

Selected 
Features!

Pre-
processing!

•  Register!

• Segment!
• Threshold!

•  Filter!
•  SNR Impr.!

•  Array Proc!

Feature!
Extraction!

•  Signal   
Features!
•  Features      
from signal 
segments!

Feature!
Selection!

•  Clustering!

• Sequential 
selection!

Classifica-
tion!

• Neural 
Networks/!
• Pattern rec.!

•  Fuzzy 
classifiers!
•  Rule based 
systems!
•  Model-
Based Algs.!

Sensor!
2!

•!
•!
•!

Sensor!
N!

Signals/Images! Signals/Images! Features!

Signal !
Acquisition!

Class 1!

Class 2!

•!
•!
•!

Class M!

Class!
Decision!

Signal Representation! Signal Understanding!

Sensor!
1!
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The ROC Curve is Computed by Integrating Under the Conditional 
Probability Density Functions for a Given Threshold  

r = Detection Statistic (e.g. Grey Scale Values)!
 !For Example:  Posterior Probabilities P(H1 | X) or P(H0 | X)!

       = !
Decision!
Threshold!

f(r | H0)! f(r | H1)!

   Feature r !
      = Detection Statistic !

f(r) = pdf!

� 

P H1 |H0( ) = PFA r0( )

                = f r |H0( )
γ

∞

∫ dr

                = 1− PSPEC r0( )

� 

P H1 |H1( ) = PD r0( ) = f r |H1( )
γ

∞

∫ dr =1− P H0 |H0( ) =1− PMISS (r0)

� 

P H0 |H1( ) = PMISS r0( ) = f r |H1( )
−∞

γ

∫ dr =1− P H1 |H1( ) =1− PD (r0)

� 

P H0 |H0( ) = PSPEC r0( ) = f r |H0( )
−∞

γ

∫ dr

� 

γ

� 

γ
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Hypothesis Testing Generates a Receiver Operating  
Characteristic (ROC) Curve 

� 

P(Detection) = PD γ( ) = f r |θ1( )
γ

∞

∫ dr

� 

P(False Alarm) = PFA γ( ) = f r |θ2( )
γ

∞

∫ dr

       =  
Decision 
Threshold 

Probability Density Functions (pdf’s) 
f(r) = pdf 

� 

γ Feature r 
= Decision Statistic 

1 

0 
0 1 

PD = P(Detection) 

PFA 
= P(False Alarm) 

SNR 

ROC Curve 

� 

γ

� 

Hypothesis H1 (Event) : r(t) = x(t) + v(t)
Hypothesis H0 (Backgrond) : r(t) = v(t)

� 

f (r |θ2)

� 

f (r |θ1)

t      = Time 
x(t)  = Signal of Interest 
v(t)  = Noise or “Background” 
r(t)  =  x(t) + v(t)  = Measurement 
       = Decision Threshold 

� 

γ
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The Confusion Matrix is Used to Measure 
Classification Performance 

� 

f X |H1( )
f X |H0( ) ≥ηDecision Rule:!
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Statistical Feature Extraction and Selection are Key to 
Effective Target Classification 

• Assume we are given a set of           feature vectors                             !
!that have been extracted from the measurements!

• We wish to minimize the number or features      that we use for several 
!reasons:!
!- The curse of dimensionality!
!- To avoid over-fitting the data and reducing classification performance  !
!- To avoid using features that are correlated enough that they!
! !do not contribute new information!

! ! !The Goal of Feature Selection:!
!Given:  A set of feature vectors containing      features !
!Select: A subset of      features                that minimize class!
! !separation in feature space (minimize the distance!
! !in feature space between                   )!

  

� 

X = x1 x2 , , xB[ ]T

� 

B ×1

� 

B

� 

B

� 

b

� 

(b ≤ B)

� 

H0  and  H1

• Assume we wish to classify targets into two classes!

� 

H0  and  H1
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Statistical Feature Extraction and Selection are Key to 
Effective Target Classification 

• Feature extraction/selection is the most important part of the !
!target recognition process (Garbage in, Garbage Out)!

• Most target recognition systems either use no feature selection!
!or assume Gaussian distributed data!
!- Suboptimal at best for non-Gaussian data!
! !(most real-world data!)!
!- Wasteful of computational capacity!

• Commonly-used feature selection algorithms use the Gaussian!
!assumption because it is mathematically tractable and!
!can be executed quickly!

• The goal of this research is to create a practical feature selection!
!algorithm for non-Gaussian data!
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Another Point of View! Photo From Lawrence A. Klein, Ph.D.!
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Sequential Forward Selection: “PAT Data”!
Bhattacharyya Distance and a Small Data Subset!

Distance!
vs.!

Feature Label!

UNRANKED!
INCREASE !

in the distance !
attributable!

to each feature !!
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Sequential Forward Selection: “PAT Data” 
Bhattacharyya Distance and a Small Data Subset 

Here, we plot the!
RANKED INCREASE !

in the distance !
attributable!

to each feature !!
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Feature Selection Example:  Automatic Event Picking for 
Seismic Oil Exploration (w/Shell Oil) 

Rank Order the Features According to the Change In the 
Bhattacharyya Distance, Using Sequential Feature Selection!

background !

Red = Events!
White = Background!

Increase in the Bhattacharyya Distance!
Attributable to Each Feature!
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Feature Subset Selection for 
Gaussian Target Classes  
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Commonly-Used Distance Measures Assume Gaussian-
Distributed Target Classes 
• Define the Following Quantities for Two Multivariate Gaussian r.v.ʼs:!

• The Mahalanobis Distance for Gaussian Data is:!

� 

µ i = Mean of the Data in Class i,         Σi =  The Covariance Matrix of Class i          
µ j = Mean of the Data in Class j,        Σ j  =  The Covariance Matrix of Class j        

� 

JM (i, j) = (µ i − µ j )
T Σi + Σ j

2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−1

(µ i − µ j )

• The Bhattacharyya Distance for Gaussian Data is:!

� 

JB (i, j) =
1
8
(µ i − µ j )

T Σi + Σ j

2
⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
−1

(µ i − µ j ) +
1
2
ln

Σi + Σ j

2

Σi

1
2 Σ j

1
2

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

� 

Class i

� 

Class j

� 

Clusters of Data for the
Two Classes in Feature SpaceMahalanobis Distance !
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Feature Subset Selection Algorithms Vary in Complexity 
• Exhaustive Search:!

� 

B = Number of Available Features
b =  Number of Desired Features to Use

The Number of Possible Subset Combinations =  
B
b

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟  = B!

b!(B - b)!

• Branch and Bound:!

-  Finds the globally-optimum feature subset!
-  The curse of dimensionality dominates!!

-  Finds the globally-optimum feature subset!
-  Saves computational complexity by not exploring every possible!

subset combination, when used with a monotonic class!
separation criterion.!
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The Branch and Bound Algorithm Rejects Suboptimal 
Subsets without Direct Evaluation 

• Yields the globally optimum solution when then the class separation!
!criterion satisfies the monotonicity condition: !

  

� 

Let Ji(x1,x2,…,xi) = The separation measure 
                                  evaluated for all features x1,x2,…,xi from the feature set.

  

� 

J1(x1) ≤ J2(x1,x2) ≤  ≤ Jb (x1,x2, … ,xb )
So, including more features should make the separation measure larger
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The Branch and Bound Algorithm Rejects Suboptimal 
Subsets without Direct Evaluation 
• Start with the full set of features!

!- Define the initial “bound value” = the value of the separation!
! !measure at the bottom-right side of the decision tree.!

• As we branch down each level of the decision tree, a feature is discarded.!
• The separation measure is evaluated at each node and compared to the!

!current bound level.!
!If the a node higher in the tree provides a separation measure!
!less than the bound, then the solutions stemming from that node!
!do not require evaluation and are ignored.!
!The current bound is updated according !
!to various algorithms, depending on the!
!variation of the B&B algorithm. !
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The Sequential Forward Selection (SFS) Algorithm Uses a 
Bottom-Up Search Strategy  

• Start with a single feature!
!• Add a feature to the current subset if the feature causes the !
!separation measure to increase.!
!• Remove a feature from the current subset if the feature causes the!
! !separation measure to decrease!
! !… and discard this feature from further consideration!!

• SFS cannot guarantee optimality!!
!- The best overall combination cannot necessarily!
! !contain the top-ranked available features, because !
!some of those features may have been discarded!!

• SFS runs very fast!

• My experience over 20 years has shown that SFS generally !performs well-
enough for Gaussian data sets!

• Sequential Backward Selection uses a similar “Top-Down” Strategy!
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Details of the Sequential Forward Selection Algorithm: 



Lawrence Livermore National Laboratory 

Grace A. Clark 

Feature Subset Selection for non-
Gaussian Target Classes  
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It is Desired that the Distance Measure Satisfy the Four 
Properties of a Metric (But Many Do Not) 

� 

Let d f (x), g(x)[ ]  denote the distance  between pdf's f (x) and g(x).
Then, the Four Properties of a Metric are :
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Information-Theoretic Distance Measures: 
Divergence = Relative Entropy  

� 

Let d( f ,g)  denote the distance  between pdf's f (x) and g(x).

• Kullback-Liebler (KL) Divergence:!

• Symmetric Kullback-Liebler (KLS) Divergence:!

• Bhattacharyya Divergence:!

� 

dKL ( f , g) = g(x)log g(x)
f (x)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

X
∫ dx

- Satisfies the Identity and Non-Negativity properties!
- Is NOT symmetric and does not satisfy the Triangle Inequality!

� 

dKLS ( f , g) = dKL ( f , g) + dKL (g, f )

- Satisfies the Identity, Non-Negativity and Symmetry properties!
- Does not satisfy the Triangle Inequality!

� 

dB ( f , g) = f (x)g(x)
X
∫ dx

- Satisfies the Identity, Non-Negativity and Symmetry properties!
- Does not satisfy the Triangle Inequality!
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The Hellinger Divergence  
Satisfies all Four Properties of a Metric 
• The Squared Hellinger Divergence is:!

� 

dH
2 ( f , g) = 1

2 f (x) − g(x)[ ]
X
∫ 2

dx

• The Hellinger Divergence is:!

� 

dH ( f , g) = 1
2 f (x) − g(x)[ ]

X
∫ 2

dx

We Use the Hellinger Divergence because it satisfies the!
properties of a metric, it is robust, and it has the 

Monotonicity Property !
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Estimation 
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A Multivariate Kernel Density Estimator Using a Gaussian Kernel 
is Commonly Used (e.g. in the Probabilistic Neural Network PNN) 
We estimate the multivariate probability density function (pdf) of a random !
Vector        by summing kernel functions K(.) centered at the locations of !
the observations        (measurements)  !

� 

ˆ f (X) =
1

(2π)
p
2σ p

1
M

exp −(X − X i)
T (X − X i)

2σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i=1

M

∑� 

X

� 

X i

  

� 

X i = p ×1 Measurement (training) data vector ( i - th of M vectors)

    = xi1 xi2xip[ ]T
i   = Integer measurement (training) vector index over the range [1,M]
M = Integer Number of measurements X i available for training
p  = Integer dimension of the measurement space
X  = p ×1 Grid vector point at which we wish to evaluate the estimate of the pdf
σ  = Scalar real - valued smoothing parameter or window width
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Example pdf Estimation for the Univariate Case (p=1):  We Must 
Build a “Grid” of Samples at Which We Wish to Estimate the pdf 

� 

ˆ f (X) =
1

(2π)
p
2σ p

1
M

exp −(X − X i)
T (X − X i)

2σ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

i=1

M

∑

Draw an “X” at the location along the real line of each of the measured data samples!
that are available for training.!

Draw a Red hash mark “|” along the real line at the locations of the desired!
“grid points” at which we wish to estimate the pdf values.!

Grid Points – Make the grid!
!      wide enough!

                       to capture the!
                       tails of the pdf!

Measurements!

� 

X i

Kernels Centered!
at the Measurement!

Locations!
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George E. P. Box (10/18/1919 -    ) !
Professor Emeritus of Statistics at the University of Wisconsin, and a pioneer in 

the areas of quality control, time series analysis, design of experiments and 
Bayesian inference. 

“Essentially, all models are 
wrong, but some are useful.” 

“Remember that all models are wrong; 
the practical question is how wrong do 

they have to be to not be useful.” 
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Example: Kernel Density Estimate for a Bivariate, Bi-Modal 
Gaussian r.v. Using an Epanechnikov Kernel 

� 

X = x1 x2[ ]T

� 

ˆ f (X)

Measurement Vectors      Used to Estimate the pdf!

� 

X i
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Example: A Slice of Feature Space for the 3D Kernel Density 
Estimates of                   and   

� 

ˆ f (X | H1)

� 

ˆ f (X | H0)

� 

ˆ f (X | H0)

� 

ˆ f (X | H1)
� 

X = x1 x2 x3[ ]T
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Our New Feature Selection 
Algorithm for Non-Gaussian Data 
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Our New Feature Selection Algorithm is Tested Using a 
Bayes Classifier / Probabilistic Neural Network 

• The New Feature Selection Algorithm for Non-Gaussian Data Uses:!
!Distance Measure: !
! !- Hellinger Divergence!

!Subset Selection Algorithms:  !
! !- Sequential Forward Selection (SFS)!
! !- Branch and Bound!

!pdf Estimator:!
! !- Kernel Density Estimator with a Gaussian Kernel!

• We Compare Results with a Classical FS Algorithm for Gaussian Data:!
!Distance Measure: !
! !- Bhattacharyya and Mahalanobis Distances!

!Subset Selection Algorithms:  !
! !- Sequential Forward Selection (SFS)!
! !- Branch and Bound!
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Selected Experimental Results 
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Experiment: Both Target Classes are Gaussian 
Branch and Bound, Training Set = 700 FV’s/Class, Test Set = 500 FV’s/Class 

• Select the best 2 of 8 features: Test Set = 700 FV’s/ Class 
Hellinger  P(CC) = 94% 
[3  5] = The subset chosen 

Bhattacharyya P(CC) = 96.9% 
[1  3] = The subset chosen 

Mahalanobis  P(CC) = 96.9%  Same subset chosen as the Bhattacharyya!

The “non-Gaussian” algorithm did not do as well as the Gaussian algorithm!
For truly Gaussian data.  This is not surprising.!
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Experiment: One Gaussian and one non-Gaussian Target Class 
Branch and Bound, Training Set = 700 FV’s/Class, Test Set = 500 FV’s/Class 

• Select the best 2 of 8 features 
HellingerP(CC) = 99.0%           BhattacharyyaP(CC) = 91.40% 
[3   8]  = The subset chosen           [1   3] = The subset chosen 

Mahalanobis 91.40% Same subset of the Bhattacharyya!

The “non-Gaussian” algorithm performed better than the “Gaussian”!
algorithm for non-Gaussian data (as expected).!
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Experiment: Both Target Classes non-Gaussian 
Branch and Bound, Training Set = 470 FV’s/Class, Test Set = 320 FV’s/Class 
• Select the best 2 of 8 features 
Hellinger P(CC) = 93.6% 
[3   5] = Chosen feature subset 

                

Bhattacharyya P(CC) = 88.6% 
[5   7] = Chosen feature subset 

Mahalanobis P(CC) = 58.9% !
[3   4] = Chosen feature subset 

The “non-Gaussian” algorithm performed much better than the 
“Gaussian” algorithm for non-Gaussian data (as expected).!
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We Use a Well-Known Real-World Benchmark Data Set: 
“Classic Fisher Iris Data”     (Approx. Non-Gaussian) 

� 

Hypothesis H0

"Versacolor"

� 

Hypothesis H1

"Virginica"� 

Number of Features =  4
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We Use a Well-Known Real-World Benchmark Data Set: 
“Classic Fisher Iris Data”     (Approx. Non-Gaussian) 
• The four features correspond to !

!- Sepal length!
!- Sepal width!
!- Petal length!
!- Petal width!

• The data set contains 50 feature vectors per class!
!(Two classes)!

• Training Set:  !
!60% of the available 50 vectors per class!
! 30 vectors per class!

• Test Set:!
!40% of the available 50 vectors per class!
! 20 vectors per class!

• Feature Subset Selection Algorithm Used:  Branch and Bound!
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“Classic Fisher Iris Data”    

• Select the best 3 of 4 features 
HellingerP(CC) = 97.50% 
[2  3  4] = Chosen feature subset 

Bhattacharyya97.50% 
[1   3  4] = Chosen feature subset 

Mahalanobis95.00% !
[1  2  3] = Chosen feature subset!

The “non-Gaussian” algorithm performed best.  The “Gaussian” 
algorithm did well => The data were nearly Gaussian!

Feature Subset 
Selection Algorithm 
Used: 
Branch and Bound 
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Conclusions 
• When the data are non-Gaussian, the new algorithm far outperforms 

 the “Gaussian” algorithm 
 - When the data are Gaussian  use the classic algorithms 

• Future Research 
 - Increase Dimensionality 
  -- Above about 10 or 12 features, the computational complexity 
   becomes very burdensome, due to density estimator 
  -- Explore other density estimation algorithms 
 - Increase speed and efficiency 
  -- Algorithm optimization 
  -- Parallel processing, etc. 
 - Test the algorithm with more and varied datasets  
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The World of Acoustics Before Signal Processing 


